Survival in Patients with Gallbladder Carcinoma over Last 13 Years: Are We Doing Any Better? A Population Based Study

Sebastian Lavio, MD1, Muhammad Sheads, MD2, Humberto Sigifuentes, MD3, Subramonian Sridhar, MBBS4. 1. Augusta University, Augusta, GA; 2. Augusta Georg University, Augusta, GA.

Introduction: Cancer screening and surgical improvement have increased steadily over recent years leading to improvement in the survival in most cancers. The aim of this study was to investigate the trend in the survival over time in patients with gallbladder carcinoma using a large population-based study.

Methods: The Surveillance Epidemiology & End Results (SEER) Cancer registry was utilized to identify patients with histologically diagnosed gallbladder carcinoma between 2000 and 2013. Kaplan-Meier analysis was used to compare differences in carcinoma-specific survival between 2000-2007 and 2008-2013.

Results: A total of 414 patients were identified for the study analysis, including 185 patients in 2000-2007 & 229 patients in 2008-2013. The mean age of the entire study cohort was 66.9 years (SEM: 0.632, range: 28-96), 80% white (10% black, 10% other) & 36% male. Staging was available in 174 (42%) pts, which demonstrated 8% in stage I, 36% in stage II, 53% in stage III & 3% in stage IV tumors. There was no significant difference in age, race, grade or localized/regional/distant extension between the time periods (all p > 0.05). Treatment for the entire cohort included primary site surgery only (25%), radiation alone (any form) plus radiation (6.9%) or neither (60%). The proportion of patients undergoing treatment with either surgery or radiation was significantly different between the two study periods (P=0.011) with a 15% absolute increase in patients who did not undergo either surgery or radiation. Kaplan-Meier analysis revealed no significant differences in survival between 2000-2007 (6-month survival: 46%, 12-month survival: 34%) and 2008-2013 time periods (6-month survival: 48%, 12-month survival: 28%), log-rank: P=0.930 (figure 1). There were no significant differences in survival in last 13 years when every year was considered individually (all p > 0.05).

Conclusion: There was no significant difference in the gallbladder carcinoma-specific survival in the last 13 years. Despite improvements in treatment strategies and surgical techniques, gallbladder carcinoma unfortunately continues to present with high mortality in patients afflicted with the disease.

Prevalence of Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE) in Hospitalized Acute Pancreatitis (AP) Patients: A Population Based Cohort Study

Chandrakanth Unepathy, MD1, Mahesh Gojurdjan, MD2, MPH, Satish Mangala, MBBS, MPH, Guru Trikudanathan, MD1. 1. University of Pittsburgh, Pittsburgh, PA; 2. University of Pittsburgh, Pittsburgh, PA; 3. Saint Louis University, Saint Louis, MO; 4. University of Minnesota, Minneapolis, MN.

Introduction: In AP, prolonged hospitalization and the pro-inflammatory cascade serve as a milieu for the development of venous thromboembolism (VTE). Our aim was to estimate the prevalence of DVT/PE (VTE) in hospitalized patients with AP and to ascertain its impact on morbidity and mortality.

Methods: The National Inpatient Sample (2002-2011) was reviewed to identify all patients hospitalized with AP with a concomitant diagnosis of VTE. The primary clinical outcome (mortality, renal failure and respiratory failure) and secondary resources outcomes (length of stay and total hospital charges) were analyzed using univariable and multivariable comparisons. Propensity score-matched analysis (matched for patient demographics, hospital characteristics, etiology, and AHRQ-Elixhauser comorbidities) was performed to compare the outcomes in patients with and without VTE.

Results: Among 2,453,997 discharges with AP, 23,614 (1%) were associated with VTE. Univariate analysis showed that among AP patients, VTE was more frequent in Whites (54% vs. 51%, p < 0.005), morbidly obese patients (3.5% vs. 2.9%, p < 0.005), and patients with more co-morbid conditions [AHRQ-Elixhauser index ≥ 3 (56.4% vs. 41%, p < 0.005)]. A multivariable logistic regression analysis showed that overall, VTE in AP was independently associated with higher mortality (OR 1.4, 95% CI 1.3-1.5, p < 0.005), pseudocyst (OR 2.9, 95% CI 2.8-3.0, p < 0.005), longer hospitalization (9.1 days, p < 0.005), and higher hospital charges ($40,985, p < 0.005). A propensity score-matched cohort analysis showed that AP patients with VTE experienced more acute kidney injury (9.3% vs. 3.3%, p < 0.005), respiratory failure (8.5% vs. 1.4%, p < 0.005), needed more mechanical ventilation (8.3% vs. 1.9%, p < 0.005), and had higher mortality (2.1% vs. 1.3%, p < 0.005). On conditional logistic regression analysis, there was a trend towards increased mortality in AP-VTE (OR 1.6, 95% CI 0.7-4.0, p=0.27).

Conclusion: Presence of VTE portends poor clinical outcome in AP patients resulting in more resource utilization. VTE prophylaxis and ambulation should be strongly encouraged in AP inpatients.